Real-Time Scaling
Scale covariance matrix based on recent realized volatility:
\[\text{scale\_factor} = \frac{\sigma_{recent}}{\sigma_{longterm}}\] \[\Sigma_{scaled} = \Sigma_{base} \times \text{scale\_factor}^2\]Asymmetric Response
Respond faster to volatility increases than decreases:
Up moves: Short half-life (5-10 days)
Down moves: Long half-life (21-42 days)
This helps preserve risk control during sudden volatility spikes.
Python Implementation
class AdaptiveCovarianceScaler:
"""Scale covariance matrix based on recent volatility regime."""
def __init__(self, fast_hl=5, slow_hl=42):
self.fast_hl = fast_hl
self.slow_hl = slow_hl
def scale_covariance(self, cov_matrix, returns, lookback=252):
"""
Scale covariance matrix based on volatility regime.
Parameters
----------
cov_matrix : np.ndarray
Base covariance matrix
returns : pd.DataFrame
Recent returns data
lookback : int
Lookback period for long-term volatility
Returns
-------
np.ndarray
Scaled covariance matrix
"""
# Calculate portfolio volatility
recent_vol = returns.tail(self.fast_hl).std()
longterm_vol = returns.tail(lookback).std()
# Asymmetric scaling
vol_ratio = recent_vol / longterm_vol
if vol_ratio > 1:
scale_factor = vol_ratio ** 2
else:
# Slower response to vol decreases
scale_factor = 1 + (vol_ratio - 1) * (self.fast_hl / self.slow_hl)
scale_factor = max(scale_factor, 0.5) # Floor at 50%
return cov_matrix * scale_factor
Benefits
- Automatically increases risk estimates during volatile periods
- Preserves capital during market stress
- Asymmetric response prevents premature de-risking